# Conditional Density Simulation¶

## Conditional Density Simulation Interface¶

class cde.density_simulation.BaseConditionalDensitySimulation[source]
cdf(X, Y)[source]

Conditional cumulated probability density function P(Y < y | x) of the underlying probability model

Parameters
• X – x to be conditioned on - numpy array of shape (n_points, ndim_x)

• Y – y target values for witch the cdf shall be evaluated - numpy array of shape (n_points, ndim_y)

Returns

P(Y < y | x) cumulated density values for the provided X and Y - numpy array of shape (n_points, )

conditional_value_at_risk(x_cond, alpha=0.01, n_samples=1000000)[source]

Computes the Conditional Value-at-Risk (CVaR) / Expected Shortfall of the fitted distribution. Only if ndim_y = 1

Parameters
• x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

• alpha – quantile percentage of the distribution

• n_samples – number of samples for monte carlo model_fitting

Returns

CVaR values for each x to condition on - numpy array of shape (n_values)

covariance(x_cond, n_samples=1000000)[source]

Covariance of the fitted distribution conditioned on x_cond

Parameters
• x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

• n_samples – number of samples for monte carlo model_fitting

Returns

Covariances Cov[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)

kurtosis(x_cond, n_samples=1000000)[source]

Kurtosis of the fitted distribution conditioned on x_cond

Parameters

x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

Returns

Kurtosis Kurt[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)

log_pdf(X, Y)[source]

Conditional log-probability log p(y|x). Requires the model to be fitted.

Parameters
• X – numpy array to be conditioned on - shape: (n_samples, n_dim_x)

• Y – numpy array of y targets - shape: (n_samples, n_dim_y)

Returns

conditional log-probability log p(y|x) - numpy array of shape (n_query_samples, )

mean_(x_cond, n_samples=1000000)[source]

Mean of the fitted distribution conditioned on x_cond :param x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)

Returns

Means E[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y)

pdf(X, Y)[source]

Conditional probability density function p(y|x) of the underlying probability model

Parameters
• X – x to be conditioned on - numpy array of shape (n_points, ndim_x)

• Y – y target values for witch the pdf shall be evaluated - numpy array of shape (n_points, ndim_y)

Returns

p(X|Y) conditional density values for the provided X and Y - numpy array of shape (n_points, )

plot(xlim=(-5, 5), ylim=(-5, 5), resolution=100, mode='pdf', show=False, numpyfig=False)[source]

Plots the distribution specified in mode if x and y are 1-dimensional each

Parameters
• xlim – 2-tuple specifying the x axis limits

• ylim – 2-tuple specifying the y axis limits

• resolution – integer specifying the resolution of plot

• mode – spefify which dist to plot [“pdf”, “cdf”, “joint_pdf”]

simulate(n_samples)[source]

Draws random samples from the unconditional distribution p(x,y)

Parameters

n_samples – (int) number of samples to be drawn from the conditional distribution

Returns

(X,Y) - random samples drawn from p(x,y) - numpy arrays of shape (n_samples, ndim_x) and (n_samples, ndim_y)

simulate_conditional(X)[source]

Draws random samples from the conditional distribution

Parameters

X – x to be conditioned on when drawing a sample from y ~ p(y|x) - numpy array of shape (n_samples, ndim_x)

Returns

Conditional random samples y drawn from p(y|x) - numpy array of shape (n_samples, ndim_y)

skewness(x_cond, n_samples=1000000)[source]

Skewness of the fitted distribution conditioned on x_cond

Parameters

x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

Returns

Skewness Skew[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)

std_(x_cond, n_samples=1000000)[source]

Standard deviation of the fitted distribution conditioned on x_cond

Parameters

x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

Returns

Standard deviations sqrt(Var[y|x]) corresponding to x_cond - numpy array of shape (n_values, ndim_y)

tail_risk_measures(x_cond, alpha=0.01, n_samples=1000000)[source]

Computes the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)

Parameters
• x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

• alpha – quantile percentage of the distribution

• n_samples – number of samples for monte carlo model_fitting

Returns

• VaR values for each x to condition on - numpy array of shape (n_values)

• CVaR values for each x to condition on - numpy array of shape (n_values)

value_at_risk(x_cond, alpha=0.01, n_samples=1000000)[source]

Computes the Value-at-Risk (VaR) of the fitted distribution. Only if ndim_y = 1

Parameters
• x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)

• alpha – quantile percentage of the distribution

• n_samples – number of samples for monte carlo model_fitting

Returns

VaR values for each x to condition on - numpy array of shape (n_values)