Linear Gaussian¶
A simple data generating process in which the mean and standard deviation of a normal distribution are specified by two parameterized lines.
-
class
cde.density_simulation.
LinearGaussian
(ndim_x=1, mu=0.0, mu_slope=0.005, std=0.01, std_slope=0.002, random_seed=None)[source]¶ A simple, Gaussian conditional distribution where
x = U(-1,1) y = N(y | mean = mu_slope*x+mu, scale = std_slope*x+std)
- Parameters
ndim_x – number of dimensions of x
mu – the intercept of the mean line
mu_slope – the slope of the mean line
std – the intercept of the std dev. line
std_slope – the slope of the std. dev. line
random_seed – seed for the random_number generator
-
cdf
(X, Y)[source]¶ Conditional cumulated probability density function P(Y < y | x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the cdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
P(Y < y | x) cumulated density values for the provided X and Y - numpy array of shape (n_points, )
-
conditional_value_at_risk
(x_cond, alpha=0.01, **kwargs)[source]¶ Computes the Conditional Value-at-Risk (CVaR) / Expected Shortfall of the fitted distribution. Only if ndim_y = 1
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
n_samples – number of samples for monte carlo model_fitting
- Returns
CVaR values for each x to condition on - numpy array of shape (n_values)
-
covariance
(x_cond, n_samples=None)[source]¶ Covariance of the distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Covariances Cov[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
kurtosis
(x_cond, n_samples=1000000)¶ Kurtosis of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Kurtosis Kurt[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
log_pdf
(X, Y)¶ Conditional log-probability log p(y|x). Requires the model to be fitted.
- Parameters
X – numpy array to be conditioned on - shape: (n_samples, n_dim_x)
Y – numpy array of y targets - shape: (n_samples, n_dim_y)
- Returns
conditional log-probability log p(y|x) - numpy array of shape (n_query_samples, )
-
mean_
(x_cond, n_samples=None)[source]¶ Conditional mean of the distribution :param x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Means E[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y)
-
pdf
(X, Y)[source]¶ Conditional probability density function p(y|x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the pdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
p(X|Y) conditional density values for the provided X and Y - numpy array of shape (n_points, )
-
plot
(xlim=(-5, 5), ylim=(-5, 5), resolution=100, mode='pdf', show=False, numpyfig=False)¶ Plots the distribution specified in mode if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
mode – spefify which dist to plot [“pdf”, “cdf”, “joint_pdf”]
-
plot2d
(x_cond=[0, 1, 2], ylim=(-8, 8), resolution=100, mode='pdf', show=True, prefix='', numpyfig=False)¶ Generates a 3d surface plot of the fitted conditional distribution if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
-
plot3d
(xlim=(-5, 5), ylim=(-8, 8), resolution=100, show=False, numpyfig=False)¶ Generates a 3d surface plot of the fitted conditional distribution if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns
- Return type
self
-
simulate
(n_samples=1000)[source]¶ Draws random samples from the joint distribution p(x,y) :param n_samples: (int) number of samples to be drawn from the joint distribution
- Returns
(X,Y) - random samples drawn from p(x,y) - numpy arrays of shape (n_samples, ndim_x) and (n_samples, ndim_y)
-
simulate_conditional
(X)[source]¶ Draws random samples from the conditional distribution
- Parameters
X – x to be conditioned on when drawing a sample from y ~ p(y|x) - numpy array of shape (n_samples, ndim_x)
- Returns
Conditional random samples y drawn from p(y|x) - numpy array of shape (n_samples, ndim_y)
-
skewness
(x_cond, n_samples=1000000)¶ Skewness of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Skewness Skew[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
std_
(x_cond, n_samples=1000000)¶ Standard deviation of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Standard deviations sqrt(Var[y|x]) corresponding to x_cond - numpy array of shape (n_values, ndim_y)
-
tail_risk_measures
(x_cond, alpha=0.01, n_samples=10000000)[source]¶ Computes the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
n_samples – number of samples for monte carlo model_fitting
- Returns
VaR values for each x to condition on - numpy array of shape (n_values)
CVaR values for each x to condition on - numpy array of shape (n_values)
-
value_at_risk
(x_cond, alpha=0.01, **kwargs)[source]¶ Computes the Value-at-Risk (VaR) of the fitted distribution. Only if ndim_y = 1
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
- Returns
VaR values for each x to condition on - numpy array of shape (n_values)