Jump-Diffusion Time Series Model¶
Jump-Diffustion continous time model by Christoffersen et al. (2016), “Time-varying Crash Risk: The Role of Market Liquiditiy”
-
class
cde.density_simulation.
JumpDiffusionModel
(random_seed=None)[source]¶ Jump-Diffustion continous time model by Christoffersen et al. (2016), “Time-varying Crash Risk: The Role of Market Liquiditiy”
- Parameters
random_seed – seed for the random_number generator
-
cdf
(X, Y)[source]¶ Conditional cumulated probability density function P(Y < y | x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the cdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
P(Y < y | x) cumulated density values for the provided X and Y - numpy array of shape (n_points, )
-
conditional_value_at_risk
(x_cond, alpha=0.01, n_samples=1000000)¶ Computes the Conditional Value-at-Risk (CVaR) / Expected Shortfall of the fitted distribution. Only if ndim_y = 1
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
n_samples – number of samples for monte carlo model_fitting
- Returns
CVaR values for each x to condition on - numpy array of shape (n_values)
-
covariance
(x_cond, n_samples=1000000)¶ Covariance of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
n_samples – number of samples for monte carlo model_fitting
- Returns
Covariances Cov[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
gamma_L
= None¶ Starting values for the model variables (unconditional expectation except for log-return)
-
get_params
(deep=True)¶ Get parameters for this estimator.
- Parameters
deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
mapping of string to any
-
kurtosis
(x_cond, n_samples=1000000)¶ Kurtosis of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Kurtosis Kurt[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
log_pdf
(X, Y)¶ Conditional log-probability log p(y|x). Requires the model to be fitted.
- Parameters
X – numpy array to be conditioned on - shape: (n_samples, n_dim_x)
Y – numpy array of y targets - shape: (n_samples, n_dim_y)
- Returns
conditional log-probability log p(y|x) - numpy array of shape (n_query_samples, )
-
mean_
(x_cond, n_samples=1000000)¶ Mean of the fitted distribution conditioned on x_cond :param x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Means E[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y)
-
pdf
(X, Y)[source]¶ Conditional probability density function p(y|x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the pdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
p(X|Y) conditional density values for the provided X and Y - numpy array of shape (n_points, )
-
plot
(xlim=(-5, 5), ylim=(-5, 5), resolution=100, mode='pdf', show=False, numpyfig=False)¶ Plots the distribution specified in mode if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
mode – spefify which dist to plot [“pdf”, “cdf”, “joint_pdf”]
-
plot2d
(x_cond=[0, 1, 2], ylim=(-8, 8), resolution=100, mode='pdf', show=True, prefix='', numpyfig=False)¶ Generates a 3d surface plot of the fitted conditional distribution if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
-
plot3d
(xlim=(-5, 5), ylim=(-8, 8), resolution=100, show=False, numpyfig=False)¶ Generates a 3d surface plot of the fitted conditional distribution if x and y are 1-dimensional each
- Parameters
xlim – 2-tuple specifying the x axis limits
ylim – 2-tuple specifying the y axis limits
resolution – integer specifying the resolution of plot
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.- Returns
- Return type
self
-
simulate
(n_samples=10000)[source]¶ Simulates a time-series of n_samples time steps
- Parameters
samples – (int) number of samples to be drawn from the joint distribution P(X,Y)
- Returns: (X,Y)
X: horizontal stack of simulated V (spot vol), L (illigudity) and Psi (latent state) - numpy array of shape (n_samples, 3)
Y: log returns drawn from P(Y|X) - numpy array of shape (n_samples, 1)
-
simulate_conditional
(X)[source]¶ Draws random samples from the conditional distribution
- Parameters
X – x to be conditioned on when drawing a sample from y ~ p(y|x) - numpy array of shape (n_samples, 3) thereby x is a horizontal stack of V, L and Psi -> x = (V, L, Psi)
- Returns: (X,Y)
X: the x to of the conditional samples (identical with argument X)
Y: Conditional random samples y drawn from p(y|x) - numpy array of shape (n_samples, 1)
-
skewness
(x_cond, n_samples=1000000)¶ Skewness of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Skewness Skew[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
std_
(x_cond, n_samples=1000000)¶ Standard deviation of the fitted distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Standard deviations sqrt(Var[y|x]) corresponding to x_cond - numpy array of shape (n_values, ndim_y)
-
tail_risk_measures
(x_cond, alpha=0.01, n_samples=1000000)¶ Computes the Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
n_samples – number of samples for monte carlo model_fitting
- Returns
VaR values for each x to condition on - numpy array of shape (n_values)
CVaR values for each x to condition on - numpy array of shape (n_values)
-
value_at_risk
(x_cond, alpha=0.01, n_samples=1000000)¶ Computes the Value-at-Risk (VaR) of the fitted distribution. Only if ndim_y = 1
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
alpha – quantile percentage of the distribution
n_samples – number of samples for monte carlo model_fitting
- Returns
VaR values for each x to condition on - numpy array of shape (n_values)