ARMA-Jump Time Series Model¶
AR(1) model with jump component
Data generation process:
where \(\epsilon_t \sim N(0,1)\) denotes a Gaussian shock and \(z_t \sim B(1,p)\) a Bernoulli distributed jump indicator with \(p\) being the probability for a negative jump.
-
class
cde.density_simulation.
ArmaJump
(c=0.1, arma_a1=0.9, std=0.05, jump_prob=0.05, random_seed=None)[source]¶ AR(1) model with jump component
- Parameters
c – constant return component of AR(1)
arma_a1 – AR(1) factor
std – standard deviation of the Gaussian Noise
jump_prob – probability of a negative jump
random_seed – seed for the random_number generator
-
cdf
(X, Y)[source]¶ Conditional cumulated probability density function P(Y < y | x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the cdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
P(Y < y | x) cumulated density values for the provided X and Y - numpy array of shape (n_points, )
-
covariance
(x_cond, n_samples=None)[source]¶ Covariance of the distribution conditioned on x_cond
- Parameters
x_cond – different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Covariances Cov[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y, ndim_y)
-
mean_
(x_cond, n_samples=None)[source]¶ Conditional mean of the distribution :param x_cond: different x values to condition on - numpy array of shape (n_values, ndim_x)
- Returns
Means E[y|x] corresponding to x_cond - numpy array of shape (n_values, ndim_y)
-
pdf
(X, Y)[source]¶ Conditional probability density function p(y|x) of the underlying probability model
- Parameters
X – x to be conditioned on - numpy array of shape (n_points, ndim_x)
Y – y target values for witch the pdf shall be evaluated - numpy array of shape (n_points, ndim_y)
- Returns
p(X|Y) conditional density values for the provided X and Y - numpy array of shape (n_points, )
-
simulate
(x_0=0, n_samples=1000, burn_in=100)[source]¶ Draws random samples from the unconditional distribution p(x,y)
- Parameters
n_samples – (int) number of samples to be drawn from the conditional distribution
- Returns
(X,Y) - random samples drawn from p(x,y) - numpy arrays of shape (n_samples, ndim_x) and (n_samples, ndim_y)
-
simulate_conditional
(X)[source]¶ Draws random samples from the conditional distribution
- Parameters
X – x to be conditioned on when drawing a sample from y ~ p(y|x) - numpy array of shape (n_samples, ndim_x)
- Returns
Conditional random samples y drawn from p(y|x) - numpy array of shape (n_samples, ndim_y)